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This paper presents a method for adjusting sectional loads to match target values for in-
tegrated force and moment coefficients. In a typical application, the sectional load profile
for one flight condition is calculated from Computational Fluid Dynamics (CFD) while
the integrated forces and moments are measured in a wind tunnel experiment. These two
methods do not generally result in identical predictions, and this leads to an inherent in-
consistency between different data products. This paper aims to provide a procedure to
remove that inconsistency. A sectional load profile for a launch vehicle splits the rocket into
slices along its length and calculates the aerodynamic loading on each slice, which leads to
a one-dimensional aerodynamic load profile that is used for structural analysis. Adjusting
sectional loads, also known as line loads, is a nontrivial matter due to several consistency
constraints. For example, the adjusted sectional normal force profile must be consistent
with both the integrated normal force and pitching moment. To avoid such inconsistency
issues, this paper presents a method using a Proper Orthogonal Decomposition (POD) to
generate basis functions to adjust the sectional load profiles. As a corollary, this correc-
tion method enables the creation of an uncertainty quantification for sectional loads that
is consistent with the dispersed integrated force and moment database and its uncertainty
quantification. Several extensions to this technique, such as applying the method to the
surface pressures, are considered.

Nomenclature

CA = CA, Axial force coefficient, body axis
CN = CN, Normal force coefficient, body axis
CY = CY, Side force coefficient, body axis
C` = CLL, Rolling moment coefficient
Cm = CLM, Pitching moment coefficient
Cn = CLN, Yawing moment coefficient
C̄n = Target value for Cn, e.g. from wind tunnel
Lref = Reference length [m]
M = Flight Mach number
UCN = Uncertainty in integrated CN
ak = Coefficient for φk

cm = Sectional load profile for CLM
cN = Sectional load profile for CN
wk = Objective function weight for φk

x = Axial coordinate [m]
x̂ = Nondimensional coordinate, x/Lref

α = alpha, Angle of attack of the core
β = beta, Angle of sideslip of the core
εCN = Random dispersion for CN, in [−1, 1]
λ = Langrange multiplier
φN,k = Sectional load adjustment k for CN
σ = Singular value from SVD
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Abbreviations
BMC = Balance Moment Center
CFD = Computational Fluid Dynamics
cg = Center of gravity/mass
LSRB = Left-hand Solid Rocket Booster
MRP = Moment Reference Point

POD = Proper Orthogonal Decomposition
RSRB = Right-hand Solid Rocket Booster
SLS = Space Launch System
SRB = Solid Rocket Booster
SVD = Singular Value Decomposition

I. Introduction
Aerodynamic sectional load profiles, also called line loads, are used for vehicle-scale structural analysis.
The primary way in which this works is that the outer mold line of the vehicle is divided into many slices,
which all have boundaries at fixed x-coordinates, and then to integrate the aerodynamic forces on each of
these slices individually. Two images of these slices are shown below using the crewed configuration of
NASA’s Space Launch System Block 1B vehicle. Figure 1 shows the slices for the full vehicle and Fig. 2
focuses on just the forward portion of the same image. The directions of the coordinate axes are shown in
Figs. 1 and 2, but the actual location of the origin is a point directly in front of the vehicle nose.

Figure 1. Sectional load slices for SLS Block 1B configuration

Figure 2. Sectional load slices on forward portion of SLS Block 1B configuration

In this work, sectional loads are extracted from Computational Fluid Dynamics (CFD) surface flow
solutions [1]. The CFD solutions were obtained using either OVERFLOW 2.2L [2] or FUN3D 13.1 [3].
The actual calculation of sectional loads from the extracted surface solutions is performed using the utility
triload [1], which is part of Chimera Grid Tools [4].

By storing the aerodynamic loads on each of these vehicle segments, the sectional load profile provides
a representation of the vehicle as a line with forces in each of the three directions provided as functions
along the length of that line. This enables structural analysis on the full scale of the vehicle provided that
picking a primary axis like this is a valid assumption. These can be used to calculate the maximum load on
the vehicle for a complete flight envelope, or it can be used as an input for aeroelastic bending analysis.

Because of the high resolution of data, the most common source for aerodynamic sectional load data
is CFD. Before CFD was a practical choice, coarser sectional loads were measured using as many static
pressure taps as a wind tunnel model could fit. Pressure-sensitive paint [5–7] is a developing alternative that
uses experimental wind tunnel data

However, due to the long and well-tested history of using wind tunnels to develop force & moment
databases, it is frequently the case that the sectional loads come from CFD while the integrated forces &
moments come from a wind tunnel experiment. As a result, even if the two data sources are as similar
as possible, there will be inconsistencies between the force & moment database and the forces one would
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get by integrating the sectional loads. In realistic applications this is further complicated by differences in
modeling such as geometric fidelity to the flight vehicle, Reynolds number, effects of wind tunnel walls,
presence of a sting in the wind tunnel (but not in the CFD), and physical effects that are difficult to include
in the wind-tunnel model, such as engine exhaust plumes.

This paper presents a method for adjusting the sectional loads (whatever the data source) so that when
integrated along the length of the vehicle, they are consistent with the force & moment database. This
sounds like a relatively trivial process, but in practice turns out to have several difficulties. For example, if
the wind tunnel normal force coefficient for a case at zero angle of attack is 0.01 and the CFD normal force
for the same conditions is −0.01, a simple scaling of the load profile results in flipping the entire profile.
Even worse adjustments occur if the CFD normal force coefficient is 0.001 with a wind tunnel measurement
of 0.02. Figure 3 shows an example of this anomaly using the actual SLS Block 1B normal force profile at
Mach 1.75, zero degrees angle of attack, and zero sideslip.
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Figure 3. Directly scaled CN profile for Mach 1.75, zero angle of attack and zero sideslip

Large local loads like those seen in the peaks of the red curve in Fig. 3 are harmful to launch vehicle
because they determine how strong the launch vehicle needs to be. An artificially high (in magnitude) line
load profile will result in an unnecessarily strong vehicle structural, and the extra weight needed to make
this stiff structure may decrease the useful payload to orbit, the Moon, or wherever the eventual destination
of the vehicle may be.

Although both the CFD and the wind tunnel predict small values of CN for this condition, the wind
tunnel value is about five times larger. As a result the directly scaled red profile in Fig. 3 is very large.
Although the numerical values of the load profile are withheld here, the local loads resulting from this
scaling are large even compared to the results at ±4◦ angle of attack.

Furthermore, there need to be at least two degrees of freedom to the adjustment to ensure that integrating
the sectional loads is consistent with the database for both a force and a moment coefficient at every flight
condition. A typical example with two degrees of freedom uses a linear combination of two terms: a
constant offset, and a linear offset function. This approach has some of the same problems from the previous
paragraph and further does not address the issue that it inherently attempts to apply the same magnitude of
correction to the nose and its very small cross-sectional area as it does to sections where the cross-sectional
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area is much larger. Applying these kinds of offsets will also shift all the points at which the sectional load
profile crosses zero, even though such locations are typically tied to physical features of the vehicle.

A robust and well-anchored adjustment method must utilize information about the typical size of the
sectional load at each station and how robust the data is at each station. The method must do this automat-
ically to avoid mistakes and/or biases by the user creating the adjustments. This paper proposes a robust
adjustment method that utilizes a Proper Orthogonal Decomposition (POD) [8] with the sectional loads from
neighboring cases as the input snapshots. This automatically creates candidate adjustment functions with
features that are shared among the input snapshots. The POD provides more than the required two adjust-
ment functions (specifically, it provides up to as many as the number of snapshots used to create the POD).
An optimization technique is introduced to select the best linear combination to satisfy the consistency con-
straints. Broadly speaking, basis functions with large local adjustment magnitudes are disfavored, and basis
functions with high singular values are favored for this optimization approach.

This approach can be generalized to a wide variety of problems with varying degrees of similarity to this
one. For example, one could use the entire surface pressure solution from CFD as the snapshots and then
perform a similar adjustment that simultaneously matches all three integrated forces and three integrated
moments. It could also be used as a way to ensure that the CFD matches exactly pressures measured at
specific points, much the way that is done in [9]. The proposed technique also enables an uncertainty
quantification method for sectional loads which allows an engineer to propagate uncertainty in the integrated
forces and moments back into the sectional loads.

The paper discusses the details of the proposed method II, and then provides some examples from actual
design and development studies of NASA’s Space Launch System in Sections III and IV. The numbers on
the y-axes of most plots have been removed because the vehicle is currently under development. The use
of a complex and realistic configuration for these examples is meant to demonstrate the robustness of the
proposed method and its readiness for technical use within the industry.

II. Sectional Loads Adjustments
A sectional load database consists of a set of six sectional load profiles at each flight condition, three sec-
tional force profiles and three sectional moment profiles. A flight condition is a combination of flight Mach
number (M), altitude (h), angle of attack (α), and angle of sideslip (β). Reynolds number and temperature
(or any other pair of variables that together define the dimensional freestream density and temperature) are
also a critical part of the flight condition, but for launch vehicles, these parameters often follow a fixed
schedule that is determined by Mach number. There are alternative methods to discretize a launch vehicle
aerodynamic database, but the choice of flight conditions does not qualitatively affect this discussion of
sectional loads.

At each flight condition (M, α, β), there is an integrated normal force coefficient CN (also written CN)
along with a sectional load profile cN(x) that gives the distribution of how this normal force is distributed
along the length of the vehicle. The pitching moment Cm (also written CLM, with the L meaning “little”)
and pitching moment sectional profile cm(x) are similarly defined.

CN = CN(M, α, β) cN = cN(x,M, α, β) (1)

Cm = Cm(M, α, β) cm = cm(x,M, α, β) (2)

The sectional loads must integrate to be equal to the integrated loads. If x1 is the coordinate of the nose
of the vehicle, and x2 is the coordinate of the tail, the integration consistency constraints can be written as
follows.

CN =

∫ x2

x1

cN(x) dx Cm =

∫ x2

x1

cm(x) dx (3)
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Furthermore, there is a relationship between the sectional normal force and pitching moment distributions.
If the moments are calculated about a moment reference point xMRP.

cm(x) =
x − xMRP

Lref
cN(x) (4)

Typically these equations are written with a slight change in order to nondimensionalize the axial coordinate
x by replacing it with x̂=x/Lref.

cm(x̂) = (x̂ − x̂MRP)cN(x̂) (5)

CN =

∫ x̂2

x̂1

cN(x̂) dx̂ (6)

Cm =

∫ x̂2

x̂1

(x̂ − x̂MRP)cN(x̂) dx̂ (7)

A similar relationship exists between the side force (CY or CY) and yawing moment (Cn or CLN), while the
axial force (CA or CA) and rolling moment (C` or CLL) are independent.

Consistency issues arise when the sectional load profile and integrated loads are calculated or measured
using different methods. Typically this means the sectional load cN is calculated using CFD while the
integrated force C̄N is measured during a wind tunnel test. However, there are other possibilities, such as
using Pressure Sensitive Paint to generate the sectional load database. As a result, it will likely be the case
that the constraints of both Eqs. (6) and (7) will be violated. In order to fix these inconsistencies, we add a
correction function φN(x̂), so that

c̄N(x̂) = cN(x̂) + aφN(x̂) (8)

where a is just a constant that is selected by some means.

A. Methods That Do Not Work

To understand the new approach, it is worthwhile to look at how some simpler techniques fail. The first
approach is use φN = cN , which is equivalent to scaling the original sectional normal force. In order to
satisfy the integrated normal force constraint, Eq. (6), the solution would be

a =
C̄N

CN
− 1

Even if this correction by coincidence also satisfied the pitching-moment constraint Eq. (7), this correction
has significant problems when the normal force is close to zero. For flight conditions at zero degrees angle
of attack, which is typically an important region of a launch vehicle’s flight envelope, the integrated values
for CN are identically zero, or very close to zero. However, slight asymmetries in the vehicle such as a
camera or similar feature may give a nonzero cN(x) value at a particular value of x. This may result in large
changes in the sectional loads despite small errors in the integrated CN , perhaps even replacing all positive
values of cN with negative values of c̄N .

A similar approach that also has insurmountable issues is to use a constant for the correction.

φN(x̂) =
1

x̂2 − x̂1

Then setting c̄N(x̂) = cN(x̂) + aφN(x̂), we can find that the correction magnitude is

a = C̄N −CN

This correction at least does not have the potential to reduce the entire sectional load profile; instead it
distributes the correction evenly across the length of the rocket. However, this still has some lesser issues.
For example, there may be sections of the vehicle for which cN really should be zero, and this correction
shifts all such regions to a small nonzero value. In addition, this type of correction cannot in general satisfy
both Eqs. (6) and (7).

5 of 23

American Institute of Aeronautics and Astronautics



B. Minimal Methods

The discussion in the previous subsection makes it clear that that satisfying the two constraints Eq. (6) and
Eq. (7) requires the use of at least two basis functions.

c̄N(x̂) = cN(x̂) + a1φN,1(x̂) + a2φN,2(x̂) (9)

We can then integrate the basis functions to develop constraints for the coefficients a1 and a2.

∆CN,1 =

∫ x̂2

x̂1

φN,1(x̂) dx̂ ∆Cm,1 =

∫ x̂2

x̂1

(x̂ − x̂MRP)φN,1(x̂) dx̂ (10)

∆CN,2 =

∫ x̂2

x̂1

φN,2(x̂) dx̂ ∆Cm,2 =

∫ x̂2

x̂1

(x̂ − x̂MRP)φN,2(x̂) dx̂ (11)

Then solving for the weights is simply a two-by-two system of linear equations.[
∆CN,1 ∆CN,2
∆Cm,1 ∆Cm,2

] [
a1
a2

]
=

[
C̄N −CN

C̄m −Cm

]
(12)

This system will have a solution whenever the columns of the matrix are linearly independent.
The remaining question of this technique is how to select the adjustment functions φN,1 and φN,2. Se-

lecting simple candidates such as the constant and linear offset from the previous section leads to difficulties
because the candidate functions do not utilize any of the available information from the known sectional
load profiles.

For example, there are often sections of the vehicle for which the local normal force is positive even
when the angle of attack is negative; using a simple linear profile to adjust the sectional load profile will
skew this. Adding a linear profile will also shift all the x-coordinates at which the normal force profile
crosses zero. Adjustments to profiles near zero degrees angle of attack can also be problematic because
small adjustments to CN or Cm may require large local adjustments. Previous experience with a similar
approach on Ares I-X [10] and SLS have demonstrated some of these pitfalls, and furthermore using only
two adjustment functions may lead to a singular or poorly conditioned system of constraints.

C. Proper Orthogonal Decomposition

In order to make the shape of basis functions more directly related to the existing sectional loads, the use
of a Proper Orthogonal Decomposition (POD) approach is considered. The POD approach is closely tied
to the Singular Value Decomposition (SVD) approach. POD is a Reduced Order Model (ROM) technique
that has been used for many aerospace applications [8, 11, 12]. It is a technique that identifies the primary
signal from a large data set in a robust and automated way. This section describes how it can be applied to
sectional load analysis using the sectional load profile from one CFD solution as the input “snapshot” and
using a family of such solutions and snapshots to identify typical sectional load profiles.

For practical reasons, sectional loads on complex geometries are discretized into a number of slices
using cuts at axial coordinates x1, x2, . . . , xn. The entire discretized sectional load profile at a single set of
flight conditions (Mi, αi, βi) can be represented as a vector:

cN,i =


cN,i,1
cN,i,2

...
cN,i,n

 =


cN(x1,Mi, αi, βi)
cN(x2,Mi, αi, βi)

...
cN(xn,Mi, αi, βi)

 (13)

where i is the case or flight condition index.
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The sectional load vector cN,i at one set of flight conditions is called a “snapshot.” The POD technique
works by collecting m snapshots into a single matrix:

CN =
[
cN,1 cN,2 · · · cN,n

]
(14)

We then compute a singular value decomposotion of the n×m matrix CN

CN = ΦNΣNVT
N (15)

The matrix ΦN (note: this matrix is often written U, but we are saving that letter of the alphabet for un-
certainties, which will be discussed later) has column vectors that have the same dimension as the snapshot
sectional load vectors.

φ̂N,i =


φN,i,1
φN,i,2

...
φN,i,n

 (16)

The basis vectors also form an orthogonal matrix, so

‖φ̂N,k‖
2 = 1 (17)

φ̂N, j · φ̂N,k =

1 j = k
0 j 6= k

(18)

The matrix ΣN is a rectangular matrix with so-called singular values along its diagonal.

ΣN =



σN,1 0 · · · 0
0 σN,2 0
...

. . .
...

0 0 · · · σN,m

0 0 · · · 0
...

...
...

0 0 · · · 0


(19)

Finally, the matrix VN is defined so that the decomposition is correct. It provides the coefficients that allow
one to reconstruct the original snapshots from the modes and singular values. While the technique discussed
here does not use VN , alternative methods may use it to provide more information for optimal adjustments.
The example above for ΣN is for the case that m > n, but the extra block of zeros could be on the right if
m < n. The singular values are positive real-valued numbers that describe how much energy is contained in
or represented by the corresponding mode. By convention, these singular values are arranged in decreasing
order, and they typically decrease in magnitude quickly. We can then select the first K ≤ m modes and use
these as the candidates for adjusting the sectional load profile.

c̄N(x̂) = cN(x̂) +

K∑
k=1

akφ̂N,k(x̂) (20)

Here K is the number of basis functions used as candidates for the adjustment, which must be at least as
large as the number of constraints; and m is the number of snapshots and therefore the maximum number of
basis functions the user may select.

Examples of these modes and how they compare to the original snapshots are demonstrated in Fig. 4.
The original sectional load profiles calculated on the Block 1B crew configuration of SLS at Mach 1.30 and
33 combinations of α and β are shown in gray. Both the lateral force (CY) and normal force (CN) loads are
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shown. The first mode to come out of the POD from these 33 snapshots is plotted in blue, and the second
mode is plotted in green. Most noticeably, the first mode looks pretty much like a snapshot, and the second
mode has more unique features. In addition, the legend of both plots in Fig. 4 indicates how much of the
data can be described by each mode. In this example, over 60% of the data is contained in the first mode,
and then the second through roughly sixth modes each contain a similar amount of descriptive capability.

dC
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Lr
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)

POD mode 1 (63.25%)
POD mode 2 (8.22%)
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Figure 4. Snapshots (gray) and first and second modes from Mach 1.30 sectional loads on Block 1B Space Launch System
configuration

Thus we have constructed an adjustment framework that is subject to only have two constraints, Eq. (6)
and Eq. (7), and multiple degrees of freedom a1, . . . , aK . In the next section a method is explored that further
constrains the system and makes it possible to solve for the K weights.

D. Optimization

Next we must devise the method to choose weights a1, . . . , aK for the adjustment equation Eq. (20). The
first step is to evaluate the increment to CN and Cm caused by each of the candidate functions

∆CN,k =

∫ x̂2

x̂1

φ̂N,k(x̂) dx̂ (21)

∆Cm,k =

∫ x̂2

x̂1

(x̂ − x̂MRP)φ̂N,k(x̂) dx̂ (22)

These can be combined into overall constraints on the integrated normal force and pitching moment

C̄N = CN +

K∑
k=1

ak∆CN,k (23)

C̄m = Cm +

K∑
k=1

ak∆Cm,k (24)

In order to provide K−2 more constraints, some form of optimization problem (or other decision metric)
must be created. The primary indicator available is the singular values; therefore modes with higher singular

8 of 23

American Institute of Aeronautics and Astronautics



values should generally be preferred during the optimization process. This idea can even be put into common
language by saying that the adjustment should look as much as possible like existing data.

Early experience showed that the second mode (with singular value σN,2) is somewhat problematic, and
so it appears beneficial to bias against this second mode. To make this a more general rule not subject to the
kind of human intervention that the previous sentence might suggest, the idea was developed to bias against
modes with highly localized contributions. Including this concept in the objective function weights gives
preference to relatively smooth adjustments.

The overall weight for each basis function’s contribution to the objective function is

vk = max
x̂∈[x̂1,x̂2]

φ̂N,k(x̂) (25)

wk = vk/σN,k (26)

Using these weights, we seek to minimize the L2 norm of the total adjustment function.

min
w∈RK

f (w) =

K∑
k=1

wka2
k (27)

In order to solve this minimization problem Eq. (27) subject to the constraints Eqs. (23) and (24), we
can use Lagrange multipliers.

F(a1, . . . , aK , λ1, λ2) = λ1

C̄N −CN −

K∑
k=1

ak∆CN,k


+ λ2

C̄LM −CLM −

K∑
k=1

ak∆CLM,k

 +

K∑
k=1

wka2
k

To minimize this Lagrangian, we set the derivative of F with respect to each ak and λ equal to zero.

∂F
∂ak

= −λ1∆CN,k − λ2∆CLM,k + 2wkak = 0 (28)

This leads to a simple linear system of equations.

∆CN,1 ∆CN,2 · · · ∆CN,K 0 0
∆Cm,1 ∆Cm,2 · · · ∆Cm,K 0 0
−2w1 0 · · · 0 ∆CN,1 ∆Cm,1

0 −2w2
. . .

... ∆CN,2 ∆Cm,2
...

. . . . . . 0
...

...
0 · · · 0 −2wK ∆CN,K ∆Cm,K





a1
a2
...

aK

λ1
λ2


=



C̄N −CN

C̄m −Cm

0
0
...
0


(29)

The system of equations in Eq. (29) is readily solved by a typical linear algebra package. Furthermore,
it is very resistant to stiffness as long as K is sufficiently smaller than m, the number of snapshots.

For the lateral loads, the process is almost identically repeated with CY and Cn in place of CN and Cm,
respectively. For the axial load, there is no corresponding moment adjustment. While adjusting CA on its
own is much less sensitive to mistakes, we use the same POD-based optimization with one less constraint.

∆CY,1 ∆CY,2 · · · ∆CY,K 0 0
∆Cn,1 ∆Cn,2 · · · ∆Cn,K 0 0
−2wY,1 0 · · · 0 ∆CY,1 ∆Cn,1

0 −2wY,2
. . .

... ∆CY,2 ∆Cn,2
...

. . . . . . 0
...

...
0 · · · 0 −2wY,K ∆CY,K ∆Cn,K





aY,1
aY,2

...
aY,K

λ1
λ2


=



C̄Y −CY

C̄n −Cn

0
0
...
0


(30)
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∆CA,1 ∆CA,2 · · · ∆CA,K 0
−2wA,1 0 · · · 0 ∆CA,1

0 −2wA,2
. . .

... ∆CA,2
...

. . . . . . 0
...

0 · · · 0 −2wA,K ∆CA,K





aA,1
aA,2

...
aA,K

λ1


=



C̄A −CA

0
0
...
0


(31)

E. Implementation Details

Several additional procedural recommendations can be made based on experience using these adjustments
with practical aerodynamic data. For a typical launch vehicle application, the ascent simulations cover a
range of Mach numbers (e.g. Mach 0.5 to Mach 5.0) and a few different angles of attack and angles of
sideslip at each Mach number.

Previous experience with launch vehicle line loads [13] has shown that different conditions (in particular,
different values of α and β) at the same Mach number generally lead to similar sectional load profiles. Since
the sectional load profiles are non-dimensional, this statement mostly refers to the shape of the profiles.
The examples in Fig. 5, which both contain the normal force sectional load profile for nine different CFD
solutions from FUN3D, demonstrate the similarities among cases of the same Mach number and differences
with other Mach numbers.
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Figure 5. Sample CN sectional load profiles on the crewed Block 1B configuration at 4◦ total angle of attack, nonnegative
sideslip, and two different Mach numbers

As a result of this observation, we take 33 or so sectional load profiles from the conditions inside the
flight envelope at one Mach number as the snapshots for Eq. (14). Our CFD run matrix typically includes
additional cases that are outside the flight envelope to support analysis of various abort scenarios. A conse-
quence of this approach is that we need to recalculate the POD for each Mach number (for SLS, we use a
run matrix of 19 different Mach numbers between 0.5 and 5.0 for ascent analysis).

Since Eq. (29) is linear, we can construct one adjustment function with ∆CN=1 and ∆Cm=0 and another
with ∆CN=0 and ∆Cm=1. For Mach number M j, we call these two adjustment profiles ψ̂N, j and ψ̂m, j,
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respectively.

ψ̂N, j(x̂) =

K∑
k=1

aN,kφ̂N,k(x̂) (32)

ψ̂m, j(x̂) =

K∑
k=1

am,kφ̂N,k(x̂) (33)

These adjustments satisfy the following properties∫ x̂2

x̂1

ψ̂N, j(x̂) dx̂ = 1
∫ x̂2

x̂1

(x̂ − x̂MRP)ψ̂N, j(x̂) dx̂ = 0∫ x̂2

x̂1

ψ̂m, j(x̂) dx̂ = 0
∫ x̂2

x̂1

(x̂ − x̂MRP)ψ̂m, j(x̂) dx̂ = 1

Once these two basis functions have been calculated for a given Mach number, a generic adjustment can be
constructed as a linear combination of them.

c̄N(x̂) = cN(x̂) +
(
C̄N −CN

)
ψ̂N, j(x̂) +

(
C̄m −Cm

)
ψ̂m, j(x̂) (34)

As a result, the implementation only needs to calculate two adjustment functions for each Mach number
(actually five: two for CN , two more for CY , and one more for CA). Although the calculation of these
adjustment functions is quick (roughly a second using simple Python code on a current workstation), trajec-
tory and structural analysis may need to query the database at thousands of different flight conditions. As
a result, eliminating the roughly one-second calculation still provides significant savings depending on the
application.

F. Uncertainty Quantification

A typical force and moment database for a modern aerospace vehicle will include an uncertainty distribution
on each of the six integrated force & moment coefficients. This uncertain force and moment database can
then be incorporated into a Monte Carlo distribution in which all of the possible values are considered in
some larger simulation (such as an ascent trajectory simulation). This typically takes the following form
where UCN is the uncertainty in CN (and therefore a single fixed value for a given flight condition) and εCN

is a random variable sampled from the appropriate probability distribution function.

C̃A = CA + εCAUCA (35)

C̃N = CN + εCNUCN (36)

C̃m = Cm + εCLMUCLM + εCNUCN
xMRP − xcg

Lref
(37)

C̃Y = CY + εCYUCY (38)

C̃n = Cn + εCLNUCLN + εCYUCY
xMRP − xcg

Lref
(39)

The dispersion function for the pitching moment (Cm) has an extra term because the integrated pitching
moment is inherently correlated with dispersions of the normal force. This form of the equation assumes
that the normal force is uncorrelated with the pitching moment about the center of gravity, although in some
applications xcg is replaced with the coordinate of the “balance moment center,” i.e. the location about which
wind tunnel moments were measured.
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Then a simple uncertainty quantification methodology for a sectional loads database is to pick many
values of εCN, εCLM, etc. and then apply Eqs. (29), (30), and (31) for each dispersed integrated force and
moment value.

To implement this uncertainty dispersion, the reference functions described in Sec. II.E are particularly
convenient. For example, for a flight condition with Mach number M j, a dispersed sectional load profile
c̃N(x̂) can be determined using the random draws εCN and εCLM.

c̃N(x̂) = c̄N(x̂) + εCNUCNψ̂N, j(x̂)

+
(
εCLMUCLM + (x̂MRP − x̂cg)εCNUCN

)
ψ̂m, j(x̂) (40)

G. Additional UQ Uncorrelated to Forces & Moments

In addition to this contribution to disperse the line load profiles in a manner consistent with the force &
moment database, there is a method to disperse the line loads in a random fashion. The motivation for this
technique is to cover additional variations in how a load might be distributed. Otherwise there is exactly one
line load for every fixed set of flight conditions and integrated forces and moments. We cannot really expect
this level of determinism from a CFD solution, and furthermore a deterministic line load does not account
for possible minor changes to the geometry.

To enable this further dispersion without putting too much burden on a user of the dispersed database,
we seek a third perturbation mode to the CN profile that changes neither the integrated normal force nor the
pitching moment. To find such a mode using a mode recommended by the POD, we modify the Lagrangian
used in Sec. D with a third constraint

F(a1, . . . , aK , λ1, λ2, λ3) = − λ1

K∑
k=1

ak∆CN,k

− λ2

K∑
k=1

ak∆Cm,k + λ3

1 − K∑
k=1

ak

 +

K∑
k=1

wka2
k

It would be ideal to replace the λ3 term with a quadratic norm instead of the sum used here. However,
the Lagrangian problem could no longer be solved as a linear system. Using an L1 norm like this appears
to permit solutions with large but oscillating (some positive, some negative) values of ak, but the objective
function term at the end suppresses large magnitudes of ak and keeps the system stable.

This leads to a slightly modified linear system of equations with one more row and one more column
than the previous version.

∆CN,1 ∆CN,2 · · · ∆CN,K 0 0 0
∆Cm,1 ∆Cm,2 · · · ∆Cm,K 0 0 0

1 1 · · · 1 0 0 0
−2w1 0 · · · 0 ∆CN,1 ∆Cm,1 1

0 −2w2
. . .

... ∆CN,2 ∆Cm,2 1
...

. . . . . . 0
...

... 1
0 · · · 0 −2wK ∆CN,K ∆Cm,K 1





a1
a2
...

aK

λ1
λ2
λ3


=



0
0
1
0
0
...
0


(41)

It is possible to construct further dispersion modes that do not affect CN and CLM that are different from
this solution. To do this, repeat the process again but with an additional constraint that the second mode is
perpendicular to the first mode. Suppose that we use b for the weights of this second mode instead of a, then
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we can construct the following:

F(b1, . . . , bK , λ1, . . . , λ4) = − λ1

K∑
k=1

bk∆CN,k − λ2

K∑
k=1

bk∆Cm,k

+ λ3

1 − K∑
k=1

bk

 + λ4

K∑
k=1

akbk +

K∑
k=1

wkb2
k

These are just examples of extending the method using different additional constraints, and are potential
avenues for forward research. In the following section, results of the adjustment process given by Eqs. (29),
(30), and (31) are presented.

III. Adjustment Results
Some examples comparing the original sectional loads extracted directly from the raw CFD solutions to the
adjusted results can be found in Figs. 6 and 7. The original loads are shown in black, and the adjusted loads
are shown in red. Although the adjusted loads could be considered the primary data, this format seems to
highlight the differences more strongly than other plotting formats that were tried.
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b) CA, β ≥ 0

Figure 6. Original sectional axial loads from CFD (black) and loads adjusted to match wind-tunnel forces and moments
(red) for Mach 1.3 flight conditions of SLS Block 1B with 4◦ total angle of attack

Figures 6 and 7 are shown for Mach 1.3, which was the Mach number for which the largest adjustments
were made. Naturally, this means that these are the easiest cases to visualize the differences between the
nominal and adjusted load profiles. Furthermore, the figures highlight flight conditions at 4◦ total angle of
attack and a variety of roll angles. This 4◦ choice corresponds to the official flight envelope for the vehicle
(at this Mach number). Although the vehicle is expected to fly at much lower total angles of attack, these
edge cases drive the structural design of the vehicle.

In Fig. 6 and 7, the conditions with negative sideslip are shown on the left, and the conditions with
positive sideslip are shown on the right. To be precise, the cases with precisely zero sideslip are shown in
both figures. There are 9 black curves and 9 red curves in each figure even though there are only 16 total
curves.

In Fig. 6, adjustments to CA are plotted for all 16 of these Mach 1.3 conditions. These loads are very
similar for each vehicle roll angle, so the different black and red lines in Fig. 6 are mostly on top of each
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other. The local cA(x̂) adjustments are roughly the same as multiplying the entire load profile by the required
factor to match the higher wind tunnel CA measurement. However, there are a few differences. First, the
adjustments to the forward portion of the vehicle (up to x/Lref=4) are very small. This indicates that all of the
snapshots used to create the POD basis had almost the same profile on that portion, and so it is considered a
weak candidate for adjustment. There is also a feature in the adjusted loads (red curves) just after x/Lref=4,
which is created by the bow shock from the noses of the two Solid Rocket Boosters interact with a flange on
the core body.
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Figure 7. Original sectional lateral and normal loads from CFD (black) and loads adjusted to match wind-tunnel forces
and moments (red) for all Mach 1.3 flight conditions with 4◦ total angle of attack

The plots of CY adjustments in Figs. 7a and 7b show that there are very small adjustments to the side
force, and the adjustments to the line load profiles are correspondingly small. Unlike the CA and CN plots,
the left and right plots are roughly mirrors. This is because side force is roughly proportional to β, and we
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have filtered the two plots using β.
Adjustments to CN for Mach 1.3, shown in Fig. 7c and 7d, show medium-sized adjustments. This

situation in which differences between CFD and wind tunnel (and also between two different CFD solvers
or between two different wind tunnel tests) is larger for CN than CY for SLS. This is likely due to the added
complexity of air flowing between the main core body and the solid rocket boosters. This complication has
less of an effect on CY, and so the results are more consistent.

The location of x̂MRP in this work is at the base of the core vehicle, but this does not affect the results of
the adjustment as long as the value of the integrated pitching moment coefficient Cm is shifted in accordance
with the moment reference point. Recall that the normal force sectional load profile, cN(x̂) affects the
integrated pitching moment coefficient, so separate plots for the pitching moment profile are not necessary.

Differences between the black and red curves in Fig. 7 are largest around the forward attach hardware
between x/Lref values of 8 and 10 with additional small spikes of differences over the portion of the vehicle
aft of this point. This forward attach hardware is known from experimentation and higher-fidelity CFD
solutions to be a highly complex and unsteady region of the flow, so it appears to be a good result that
some of the larger adjustments are located there. Conversely, the forward portion of the vehicle has fewer
wakes and other sources of unsteadiness, and so the smaller adjustments there are consistent with the higher
confidence in the corresponding sections of the load profile.

Another noteworthy factor in Figs. 7c and 7d is the small adjustments to the curve in the center of each
plot. These are for cases with perfect sideslip, i.e. α=0◦. It may seem like a small accomplishment to
adjust this small CN profile, but adjusting this profile to match a target integrated normal force and pitching
moment simultaneously can have problems when using overly simple methods. In particular, problems often
arise because a small adjustment to either integrated load may require a sign change, which has obvious
implications if the user attempts to simply scale the load profile (as explained in Sections II.A and II.B).

To provide another example of adjustments, and to demonstrate how sectional loads from different Mach
numbers are qualitatively different, Fig. 8 shows the original CFD and adjusted CY and CN sectional loads
for Mach 3.0. The results are for 6◦ total angle of attack because the SLS flight envelope expands from 4◦

to 6◦ at Mach 2.5. The difference between black and red lines are smaller in these results, reflecting a closer
agreement between CFD and wind tunnel results at these conditions.

In addition, the Mach 3.0 profiles all look quite similar to each other (after applying a scale factor) but
quite different from the Mach 1.3 results. This is relevant because developers must make a decision about
which snapshots are included in the POD. The combination of Figs. 7 and 8 demonstrate why snapshots
are grouped by Mach number for this database, but in general users can try multiple groupings and use the
singular values to decide which grouping is most appropriate. A POD with higher first and second singular
values is usually an indication of a better grouping, although making general statements for this class of
engineering problem is not always possible.

IV. Uncertainty Quantification Results
This section demonstrates a small number of examples of dispersed sectional load profiles. Two flight
conditions, both around maximum dynamic pressure for the SLS Block 1B vehicle, are highlighted: one at
4◦ angle of attack with 0◦ sideslip and one at 4◦ sideslip angle with 0◦ angle of attack.

The first example in Fig. 9 shows the distribution of the c̃N(x̂) profile (sectional normal force coefficient)
for the zero-sideslip case. In Fig. 9a, only the integrated normal force is dispersed, and the pitching moment
about the center of gravity is kept constant. The thick black curve is the adjusted c̄N(x̂) profile as discussed
in the previous section; that is, it is adjusted to match the CN measured in the wind tunnel. Then a selection
of values for εCN are made (from Eq. (36)). In Fig. 9, positive values of εCN have red curves, while negative
values of εCN have blue curves.

In Fig. 9a, the dispersed set of sectional loads are simply the base load (black curve) plus εCN times a
common adjustment load. Therefore the load at any x-coordinate varies linearly with εCN. However, there
are locations at which the blue curves are above the nominal profile. At these locations, the local cN(x̂) must
change in the opposite direction as integrated CN in order to preserve the pitching moment.
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Figure 8. Original sectional lateral and normal loads from CFD (black) and loads adjusted to match wind-tunnel forces
and moments (red) for Mach 3.0 flight conditions of SLS Block 1B with 6◦ total angle of attack
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Figure 9. Dispersed sectional CN for SLS Block 1B at Mach 1.75, α=4◦, β=0◦. Red curves are for increases to integrated
CN, and blue curves are for decreases in CN.

Figure 9b simultaneously disperses both integrated normal force (CN) and pitching moment (CLM). The
normal force and pitching moment about the center of gravity are dispersed independently. There are more
curves because dispersions of both integrated loads are considered, but the choice of colors is the same as
9a. Some regions of the plot are purple, which means that the local c̃N(x̂) can change in either direction
depending on the value of εCLM.

The results of Fig. 9b are shown in two more formats in Fig. 10. Figure 10a is very similar to the
previous figure except that the solid lines showing the adjusted loads are replaced with filled patches. In
particular, the region between the primary (black) curve and each dispersed load is filled in with either a
blue or red area. Each load uses a mostly transparent patch, so that it is possible to see some effect of the
patches that are behind. Meanwhile, Fig. 10b shows the same set of curves but with red now representing
an increase in the pitching moment (about the center of gravity) and blue a decrease. The fact that Fig. 10b
has less purple pixels suggests that local shifts to the c̃N(x̂) profile are better correlated to εCLM than εCN.

For the same flight conditions as the previous figures, Fig. 11 shows the dispersions in the side force
(CY) sectional loads. Because the sideslip angle is zero for this case, the baseline CY load is very small, and
the dispersions look large compared to the amplitude of the black curve. The left figure, Fig. 11a, colors the
dispersions by changes to the integrated force while the right figure, Fig. 11b, colors the same dispersions
by the sign of the change to the yawing moment. Since Fig. 11b has more purple, the c̃Y (x̂) dispersions are
better correlated to changes in integrated CY than integrated CLN.

In order to provide an example of a c̃Y (x̂) dispersion in which the baseline is not so small, Fig. 12 shows
the dispersions for flight conditions at Mach 1.75 with zero angle of attack and 4◦ sideslip. In these figures,
the dispersions are small relative to the magnitude of the baseline load (black curve), and as in Fig. 11 the
local shifts to the sectional load profile correlate better with εCY than εCLN.

These figures (9–12) are good visualizations of the dispersed line load, but users of this type of data may
require additional information or processing. A very common application of an aerodynamic sectional load
database is to calculate an overall bending moment from each sectional load profile. For such an application,
the user of the database should calculate the bending moment for several dispersed values of εCN, etc. The
result is a histogram or probability density function of the bending moment for each condition. Such a
process is additional work for the user of the data, but it is also rewarding because it allows the user to
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Figure 10. Dispersed sectional CN on the core body of SLS Block 1B at Mach 1.75, α = 4◦, β = 0◦
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Figure 11. Dispersed sectional CY on the core body of SLS Block 1B at Mach 1.75, α = 4◦, β = 0◦

c Y
(x̂

)

2 4 6 8 10 12 14
x/Lref

1

0

1

y
/L

re
f

a) Dispersed CY colored by εCY

c Y
(x̂

)

2 4 6 8 10 12 14
x/Lref

1

0

1

y
/L

re
f

b) Dispersed CY colored by εCLN

Figure 12. Dispersed sectional CY on the core body of SLS Block 1B at Mach 1.75, α = 0◦, β = 4◦
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translate the aerodynamic uncertainty quantification into information about the uncertainty in the bending
moment.

Similarly, another application of an aerodynamic sectional load database is to use it as the basis for a
flight simulation including aeroelastic bending. In this case, the user is probably already performing a Monte
Carlo analysis in which many inputs to the simulation are varied randomly, and this tells such a user how to
fully account for uncertainty in the integrated forces and moments.

This uncertainty quantification method focuses on databases that describe changes in flight conditions.
It can easily be extended to support geometry changes, provided a reasonable set of snapshots for different
geometries can be parametrized and calculated. The approach is also different from Barth’s [14] approach
to a posteriori uncertainty quantification, which uses an ensemble of CFD solutions to estimate sensitivity
to uncertainty in parameters such as the freestream Mach number.

In general, the approach in this paper inherits the magnitude of its uncertainty dispersions from the
uncertainty in the wind tunnel force & moment database, and CFD sources of uncertainty are not directly
discussed. In practice, the force & moment database may include a term from uncertainty in the CFD
solutions, especially if a CFD increment added to the wind tunnel measurements. Adding to the dispersions
to support additional sources of uncertainty is possible using the methods discussed in Sec. II.G. The list of
CFD solutions in the database could also help to enable additional uncertainty quantification or improve the
accuracy of this procedure. For example, if users are concerned that the sectional loads are sensitive to the
choice of turbulence model, a subset of the solutions could be repeated using an alternative model, and then
the multiple solutions at identical flight conditions can be added as snapshots to the POD.

V. Extensions and Alternatives
Some elements of this sectional load dispersion technique have relevance to any situation in which a multi-
dimensional database must be adjusted or dispersed while maintaining consistency with scalar constraints.
In the examples discussed in the preceding discussion, the dimension of the database entries being adjusted
or dispersed was one. That is, adjustments were being made to one-dimensional data sets. Each adjustment
was subject to one (CA) or two (CY and CN) constraints.

The algorithms are not substantially complicated by increasing the dimension of the dispersed data.
One example is to consider surface pressure solutions as the snapshots to the POD instead of sectional
load profiles. In the methods discussed in previous sections, CY and CN have separate adjustments, which
are applied independently and are not necessarily consistent with with any particular surface pressure. An
alternative approach that is more self-consistent is to derive the the line load adjustments directly from
surface pressure snapshots. Let pi be the surface pressure solution from case i run at flight conditions of Mi,
αi and βi. The vector of discretized surface pressure coefficients from the CFD solution is an appropriate
construction for pi, but optionally resampling the surface to develop smaller snapshots is also possible.
These snapshots (again from a fixed Mach number if following the methods described previously in this
paper) are assembled into a quite large data matrix

P =
[
p1 p2 · · · pm

]
The POD of this matrix leads to basis modes φ̂1, φ̂2, . . . , φ̂K that now represent a change in surface pressure
at every point on the surface of the vehicle. The modes have singular values σ1, σ2, . . . , σK , respectively.

Furthermore, it is possible to integrate these surface pressures to calculate ∆CA,k, ∆CY,k, ∆CN,k, ∆C`,k,
∆Cm,k, and ∆Cn,k for each mode φ̂k. This leads to a simple extension of Eq. (29) to simultaneously adjust all
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six force & moment coefficients.

∆CA,1 ∆CA,2 · · · ∆CA,K 0 · · · 0
∆CY,1 ∆CY,2 · · · ∆CY,K 0 · · · 0
∆CN,1 ∆CN,2 · · · ∆CN,K 0 · · · 0
∆C`,1 ∆C`,2 · · · ∆C`,K 0 · · · 0
∆Cm,1 ∆Cm,2 · · · ∆Cm,K 0 · · · 0
∆Cn,1 ∆Cn,2 · · · ∆Cn,K 0 · · · 0
−2w1 0 · · · 0 ∆CA,1 · · · ∆Cn,1

0 −2w2
. . .

... ∆CA,2 · · · ∆Cn,2
...

. . . . . . 0
...

...
0 · · · 0 −2wK ∆CA,K · · · ∆Cn,K





a1
a2
...

aK

λ1
λ2
λ3
λ4
λ5
λ6



=



C̄A −CA

C̄Y −CY

C̄N −CN

C̄` −C`

C̄m −Cm

C̄n −Cn

0
0
...
0



(42)

Solving this system six times (one for an increment in CA, another for an increment in CY, and so on) results
in a set of surface pressure deltas that can be used to construct an estimate of the surface pressure for any
wind-tunnel–based or uncertainty-derived adjustments to the integrated forces and moments. Each of these
six modes has the same data structure of a surface pressure, and it is possible to calculate a line load using
it.

For example let φ̂A, j be the surface pressure profile at Mach number M j that adjusts CA by 1.0 and
leaves the other forces & moments unchanged. This is a triangulated surface (or whatever the structure of
the surface grid may be) of pressures, so we can calculate sectional load profiles using this surface. Let
the three profiles be ψ̂A,A, j, ψ̂A,Y, j, and ψ̂A,N, j. Note that there are three of these sectional load profiles;
even though we specify that there is no change to integrated CY , there may be local changes that result in a
nontrivial sectional load profile. Then the dispersed sectional loads are

c̄N(x̂) = cN(x̂) +
(
C̄A −CA

)
ψ̂A,N(x̂) +

(
C̄Y −CY

)
ψ̂Y,N(x̂) +

(
C̄N −CN

)
ψ̂N,N(x̂)

+
(
C̄` −C`

)
ψ̂`,N(x̂) +

(
C̄m −Cm

)
ψ̂m,N(x̂) +

(
C̄n −Cn

)
ψ̂n,N(x̂) (43)

c̄η(x̂) = cη(x̂) +
∑

ν∈[A,Y,N,`,m,n]

(
C̄ν −Cν

)
ψ̂ν,η(x̂) for η ∈ [A,Y, `,m, n] (44)

Technically, including viscous forces in these adjustments would be a better solution than just using the
surface pressures. Several ways to integrate these forces exist. One is to simply include the directional skin
friction coefficients in all three directions in the snapshots. This makes the snapshots four times larger, but
the rest of the process remains the same. An alternative would be to calculate the three components of the
local forces from both pressure and viscous forces, but this creates a change to the line load calculation
procedure (although not a complex change).

Creating the POD for surface pressure solutions greatly increases the size of each snapshot, and in initial
trials this means each POD takes several minutes on a current workstation. Memory may be a more critical
limitation when working with large snapshots, and to avoid issues with memory, it may be appropriate to
down-sample the surface to a coarser grid. Quite often the required mesh size to calculate an accurate CFD
solution is much larger than what is required by the customers of a surface pressure database.

This discussion, which extends the adjustment/dispersion methodology to surface pressures, demon-
strates the ease with which it can be applied to different problems. Adding more constraints to the problem
simply involves adding more rows and columns to a system of equations such as that in Eq. (42). For ex-
ample, forcing the adjusted/dispersed surface pressure to match a Cp value measured by a specific pressure
tap in a wind tunnel or flight test just adds one more row and one more column. The technique does not
extend to adding an infinite number of constraints (such as adjusting the surface pressure such that a specific
sectional load profile is matched or adjusting a surface pressure to match an off-body pressure trace used
for sonic boom prediction), but otherwise making adjustments to multidimensional solutions with a finite
number of constraints for many problems can be described using this outline. Modest additions, such as
matching a line load in a least-squares sense, may enable meeting multidimensional constraints as well.
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VI. Summary
This discussion introduced a new analysis technique that enables uncertainty quantification for aerodynamic
sectional loads. The method also enables adjustments to the sectional loads to match target integrated forces
and moments using a Proper Orthogonal Decomposition and optimization to make the adjustments. By
using the POD and data from neighboring sectional load profiles, the adjustments are anchored in plausible
realizations and avoid most of the problems with manual or arbitrary adjustments. At its root, this method
provides a solution for the problem of adjusting an array of data (for example a one-dimensional sectional
load profile or a multidimensional pressure field) to match one or more integrated properties. In essence
this technique provides methods to preserve or create consistency. In the example that takes up most of the
discussion, this means consistency between a sectional load profile created using computational methods
and a force and moment measurement from a wind tunnel experiment, but the main aspects of the technique
are applicable to a huge variety of problems.

The sectional load adjustment technique was applied to the aerodynamic sectional loads of NASA’s
Space Launch System Block 1B crewed vehicle, which is scheduled to be the second or third SLS configu-
ration to launch and will support advanced co-manifested crew and payload exploration missions. Examples
are shown for a variety of conditions in the SLS ascent flight conditions including transonic, low supersonic,
and maximum dynamic pressure. Plots are shown of nominal loads extracted directly from Computational
Fluid Dynamics solutions, adjustments to these loads to match integrated force and moment coefficients
measured from a wind tunnel experiment, and dispersed sectional loads that are fully consistent with the un-
certainty quantification of the wind tunnel data. By applying these methods to real data from detailed models
of flight hardware, the paper demonstrates the capability of the method to support realistic engineering sce-
narios. Future applications of the new method to launch vehicle aerodynamics will include creating surface
pressure databases that are consistent with both sectional loads and integrated forces, base forces from CFD
that are consistent with measurements from pressure taps, and the creation of uncertainty quantifications for
more data products where it was not previously possible. Finally, these general methods for adjusting data
arrays subject to constraints on integral or scalar constraints is likely to have additional applications outside
the narrow field of launch vehicle aerodynamics.
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